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The influence of elastic constants on the shape of an inclusion
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Abstract

A continuum mechanics model is proposed to investigate coherent misfitting precipitates in a matrix material. This

elasticity based method takes arbitrary anisotropic materials, eigenstrains and interface energies into account. The

equilibrium shape of the precipitate is described in terms of Eshelby�s driving forces acting on the precipitate interface.

According to this force, an efficient shape optimization technique is formulated to investigate the influence of various

parameters such as particle size, elastic constants and inhomogeneity on the equilibrium morphology. Using stable

equilibrium shapes, the macroscopical response of the composite is calculated and compared with some common

approximation techniques. The numerical treatment is realised with the finite element method.
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1. Introduction

The prediction of material properties of heterogeneous materials presents a difficulty if the micro-

structure changes during mechanical or thermal influence. This happens for example in single-crystal Ni-

base superalloys used in many modern high temperature applications, where the microstructure is formed

by coherent precipitates (c0-phase) in a matrix material (c-phase). To understand the material behaviour

and the temporal evolution of the precipitate shape in detail, a lot of experimental, theoretical and nu-
merical work has been done in the last few years. While purely analytical formulations are very restricted to

simple cases, a generalized treatment of the problem can only be achieved by computational investigations,

where the numerical models are either of stochastic or deterministic nature.

One possibility to simulate equilibrium morphologies is to use the Monte Carlo type atomistic simu-

lations (Binder, 1986) based on a combination of statistical mechanics and linear elasticity. The first- and

simplest-stochastic model for spinodal decomposition and diffusive growth of particles from a super-

saturated matrix is the Ising-model from 1924. Actually developed to describe magnetizing, the model is

recently applied to questions associated with binary mixtures, see (Glotzer et al., 1994). Such a simple
model is, however, unable to consider the elastic interaction of particles. This has been achieved by the
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discrete atom method (DAM) (see Lee, 1995). Within the DAM-model, the material is represented by an

elastic triangular lattice considering the nearest neighbours. Because of the chosen lattice structure, the

model is restricted to a Poisson ratio of 0.25 in the isotropic case (Lee, 1996). A continuum general-

ization called Gauss point method (GPM) was capable to overcome the restriction of the DAM (see
Kolling and Gross, 2001). Considering the Gauss integration point within a finite element as a lattice

place, arbitrary material parameters can be used. All these models are very time consuming for com-

puting the equilibrium shapes of the precipitates. If parameter investigations are required, deterministic

models are favorable. Here, mainly two different approaches using a sharp or a diffusive interface are

worth mentioning.

In sharp interface models, the c- and the c0-phase are separated by a singular surface and a generalized

thermodynamic force acting on the interface is introduced (Thompson et al., 1994; Socrate and Parks,

1993). The equilibrium shape of the inhomogeneity is found by minimization of the total potential. A
generalization of this theory has been done by extending the simulations to inhomogeneous settings

(Schmidt and Gross, 1995), fully 3D-case (Mueller and Gross, 1998) and interaction with other material

defects like microcracks (Kolling et al., 2002).

Another useful tool is the continuous description of the interface via equations of the Cahn–Hilliard type

(Cahn and Hilliard, 1958) developed in order to describe spinodal decomposition at early stages of the

process and, subsequently, diffusive growth of particles in a supersaturated matrix at later stages (K€uupper
and Masbaum, 1994). This nonlinear diffusion equation originally contained no elastic strain energy. This

has been achieved in a special form recently (e.g. see Dreyer and M€uuller, 2000).
The intent of this paper is, on the one hand, to show the influence of elastic constants on the stability of

an inhomogeneity with misfitting eigenstrains following (Schmidt and Gross, 1997). On the other hand, the

influence of the macroscopical response of the material behaviour during the temporal evolution of the

morphology will be discussed.

In Section 2 the basic equations for the sharp interface model, the total energy and the driving force

acting on the interface will be derived. Furthermore, some homogenization approximations for the global

material behaviour are discussed. In Section 3 the numerical methods for calculating the driving forces via

finite elements and a shape optimization technique are described in detail. A discussion and a summary of
the results are presented in Sections 4 and 5.
2. Micromechanical model

Considered is a misfitting isolated precipitate BI with elasticity tensor CI and lattice constant ac0 in a

finite matrix domain BM with elasticity tensor CM and lattice constant ac. Thus, the c0-phase is modeled by

an eigenstrain e0 ¼ ðac0 � acÞ=ac1 in BI caused by the difference in the lattice constants. The two regions are
separated by a sharp interface oB (see Fig. 1).
2.1. Configurational forces

In the aforementioned model, the free energy w of the system depends on the strain e ¼ 1
2
ð$uþ ð$uÞTÞ,

where u is the displacement. And because of the interface, w depends explicitly on the position x:
w ¼ ŵwðe; xÞ. Now, we investigate the energy change of the system by computing the gradient
$w ¼ oŵw
oe|{z}
¼r

: $$uþ oŵw
ox

�����
expl:

; ð1Þ



Fig. 1. Continuum mechanical model.
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where r : $$u is rijui;jk in index notation for Cartesian coordinates. Rewriting (1) and using the mechanical

equilibrium condition divr þ f ¼ 0 we get
oŵw
ox

�����
expl:

¼ $w � div ð$uTrÞ þ $uT divr|ffl{zffl}
¼�f

¼ div ðw1� ð$uÞTrÞ � $uTf ð2Þ
and achieve a balance equation of the form
div ðw1� ð$uÞTr|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
:¼R

Þ � $uTf � oŵw
ox

�����
expl:|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

:¼g

¼ 0: ð3Þ
Here, R is the energy-momentum tensor (Eshelby, 1951, 1970) and the term g is called configurational

(body) force. In some literature, Eshelby-stress tensor and material force are other names for R and g. Note

that (3) has the same structure as the mechanical equilibrium condition.

2.2. Force on the inclusion

In absence of body forces, the total potential P of the model can be written as a sum of elastic strain

energy Pel, the potential of the external loads Pext and the interfacial energy Pint.

The mechanical part is given by
Pel þ Pext ¼
1

2

Z
BI

ðe � e0Þ : ½CIðe � e0Þ�dV þ 1

2

Z
BM

e : ½CMe�dV �
Z
oBM

t̂t 	 udA; ð4Þ
were t̂t ¼ r1n is the external load. The displacement is continuous for a coherent interface:
sut ¼ 0; 8x 2 oB: ð5Þ

The operator sð	Þt denotes the jump between outer and inner limit of a quantity across the interface oB.
The interfacial part Pint of the total energy is given by
Pint ¼
Z
oB

cdA; ð6Þ
where c is an isotropic interfacial energy density. In general c can be anisotropic, but for simplicity we

restrict attention to the isotropic case in this paper.



4402 S. Kolling et al. / International Journal of Solids and Structures 40 (2003) 4399–4416
2.3. Equilibrium shape

In general, morphologies, which extremize the total potential P are named equilibrium shapes. A

necessary condition for a morphology to be an equilibrium shape is that the first variation of P vanishes
(dP ¼ 0). Restricting the volume of the inclusion VI to remain constant (mass conservation: VI ¼ V0) during
the variation, the equilibrium shape can be analyzed at various prescribed particle sizes. To fulfill the

constrained, the potential P is augmented by a Lagrange multiplier k:
L ¼ P þ Pk ¼ P þ kðVI � V0Þ: ð7Þ

The variation of this Lagrange functional (see Mueller et al., 2000 for details) results in
dL ¼ �
Z
oB

ðGn � kÞdndAþ dkðVI � V0Þ; ð8Þ
where dn denotes a shape variation of the interface along its normal and
Gn ¼ n 	 sRtn|fflfflfflffl{zfflfflfflffl}
Gel
n

þ cj|{z}
Gint
n

ð9Þ
represents the configurational force. It consists of an elastic part Gel
n , which can be expressed by an explicit

formula as well (see Schmidt and Gross, 1999) and an interface part Gint
n . Furthermore, n is the outward unit

normal vector on oB, j is twice the mean curvature of the interface and R is Eshelby�s energy momentum

tensor from (3). Since dL has to be zero at a stationary point, a necessary condition for arbitrary variations

dn and dk is that both brackets in Eq. (8) have to be zero, ergo Gn has to be constant on oB. Thus, we define

the mean value of Gn as
hGni :¼
R
oB

GndAR
oB

dA
¼ const: ð10Þ
For any deviation from this average value, the driving force either acts as a pressure or as a traction on the
interface (according to its sign) towards an equilibrium shape. For an equilibrium shape, (10) corresponds

the Lagrange multiplier: hGni � k.

2.4. Macroscopical response

For the overall properties of the material with inhomogeneities in equilibrium morphology, we use the

standard representative volume element (RVE) technique. Here, we consider the matrix boundary oV
surrounding the entire volume V ¼ VI [ VM as a RVE. The average values of the stress and strain fields are
given by
hri ¼ 1

V

Z
V

rðxÞdV ¼ 1

V

Z
oV

t � xdA ð11Þ
and
hei ¼ 1

V

Z
V

eðxÞdV ¼ 1

2V

Z
oV
ðu� nþ n� uÞdA: ð12Þ
The operator hð	Þi denotes the average value of a quantity ð	Þ in V . The effective (macroscopic observable)

stiffness tensor Ceff can easily be computed by using three (2D) or six (3D) linear independent stress

(ejoV ¼ e1 ¼ hei) or strain (rjoV ¼ r1 ¼ hri) boundary conditions:
hri ¼ Ceff : hei: ð13Þ
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However, it must be noted that, of course, it exists a macroscopical eigenstrain due to the eigenstrain e0 of

the inhomogeneity. But in this investigation, we are only interested in the effective stiffness of the material,

which is independent of an existing e0.

Some of the most common estimations of the effective material properties are shortly outlined in what
follows, for details see the books by Mura (1987) and Nemat-Nasser and Hori (1993). The simplest ap-

proximations are according to Voigt Ceff
V assuming constant strain in V and Reuss Ceff

R assuming constant

stress in V :
Ceff
V ¼ cICI þ cMCM ; Ceff

R ¼ ðcIC�1
I þ cMC

�1
M Þ�1

: ð14Þ

Here, ci ¼ Vi=V is the corresponding volume fracture of the considered phase i ¼ I ;M . In an energy

manner, Ceff
V is an upper bound and Ceff

R is a lower bound for effective stiffness approximations. Further

analytical approximations can easily be achieved if ellipsoidal inclusions are considered together with

isotropic matrix materials. By using the average strain assumption e1 ¼ hei, the so-called dilute distribution

method yields
Ceff
DD ¼ CM þ cIsCt : ½1þ PM : C�1

M : sCt��1
: ð15Þ
Here, PM is Eshelby�s tensor of the isotropic matrix phase, which depends also on the aspect ratio of the

ellipse. As the main assumption of this method, the interaction between inhomogeneities is neglected, ergo

the matrix phase dominates: cI � cM . Mori and Tanaka gave an approximation which is capable to
consider higher volume fraction with interacting particles by assuming the equivalence of the macroscopic

and matrix strain (e1 ¼ heiM ) or stress (rjoV ¼ hriM ):
Ceff
MT ¼ CM þ cIsCt : ½1þ cMPM : C�1

M : sCt��1
: ð16Þ
3. Numerical methods

3.1. Field equations

For the numerical treatment of the driving forces (9) the required field equations in (3) are calculated via
standard finite elements. An iso-parametrical formulation of an element Xe leads to the global residual
[nel
e¼1

XN
J¼1

gJ 	
XN
K¼1

Z
Xe

BT
J rK dX

"
�
Z
oXr

e

NJ t̂tdC

#
¼ 0: ð17Þ
Here, N are the number of nodes per element, g is a test function, the matrix BJ contains the derivatives of

the shape functions NJ , t̂t ¼ r1n denotes an external load vector acting on the element boundary oXr
e and

the operator [ denotes the required assemblage of all elements. If this system of equations is solved, the

energy momentum tensor R in (3) and the average values (11) and (12) can be computed easily in a post

processing.
3.2. Configurational forces

Starting point for calculating Gn is the weak formulation of (3)
Z
B

ðdivR þ gÞ 	 gdV ¼
Z
B

ð�R : $g þ g 	 gÞdV þ
Z
oB

Rn 	 gdA ¼ 0; ð18Þ
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where g is again a test function, but has not to be the same as in (17) necessarily. If we assume stationary

boundaries, the test function g is zero on oB and the boundary integral in (18) vanishes. In a post pro-

cessing, we compute R in every Gauss-point of the element and obtain the driving force acting on the node

J by
GJ ¼ [n�
el

e¼1

Z
Xe

R$NJ dX: ð19Þ
Now, the operator [ denotes the assemblage of all n�el elements adjacent to node J . For further details and
applications of this computational technique for a wide range of material science, see (Mueller et al., 2002;

Steinmann, 2000; Steinmann et al., 2001). The relation between GJ in (19) and Gn in (9) is outlined in

Appendix A.

3.3. Shape optimization

The equilibrium shape of the inhomogeneity is obtained by extremizing the augmented Lagrangian L
with respect to the surface oB of the precipitate. Therefore, the considered surface of the inhomogeneity is

described by a set of M shape parameters qi. Then, the variation in normal direction is given by
dn ¼ ox

oqi
	 ndqi 8x 2 oB; i ¼ 1; . . . ;M : ð20Þ
Inserting (20) in the augmented potential (8) leads to a system of M þ 1 nonlinear equations
F1ðqi; kÞ ¼ �
Z
oB

ðGn � kÞ ox
oq1

	 ndA ¼ 0;

..

. ..
.

FMðqi; kÞ ¼ �
Z
oB

ðGn � kÞ ox

oqM
	 ndA ¼ 0;

FMþ1ðqi; kÞ ¼ VI � V0 ¼ 0;
which can be solved by quasi-Newton methods. Useful shape parameters are for example the radii qi ¼ ri of
the interface nodes: xi ¼ eri ri, where e

r
i are the direction position vectors. Thus, the partial derivative in (20)

remains oxi=ori ¼ eri . Using quasi-Newton methods, this shape optimization is very efficient. However, it is

not suitable to describe the temporal evolution of an initial shape towards an equilibrium one. For such

kinetic investigations (see Mueller and Gross, 1999; Kolling and Gross, 2001; Kolling et al., 2003).

Using solely the aspect ratio q :¼ q ¼ a=b of the principal axis a and b of the inhomogeneity as the most

important shape parameter, the total potential depends on two parameters only: P ¼ Pðq; cÞ. Because P is

a linear function in the interfacial energy c, a critical value ccrit due to P can be approximated by calculating
P for two different values c0, c1 (c0 < c1) and elongations q ¼ 1, q ¼ 1þ Dq (Dq > 0):
ccrit � c0 � a0ðc1 � c0Þ; ð21Þ

where
a0 ¼
dP
dq

����
q¼1þDq;c1

"
� dP

dq

����
q¼1þDq;c0

#�1

dP
dq

����
q¼1þDq;c0

: ð22Þ
It describes the transition from concave to convex curvature of the function along a fixed line q ¼ const. If
no transition exists, ccrit is identically zero. The physical meaning of this critical value will be discussed in

detail below.
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The stability of equilibrium configurations qequ at c ¼ const: are found by determining the minimum or

maximum values of Pðq; cÞ respectively:
d2P
dq2

����
q¼qequ

> 0 ! stable;
¼ 0 ! critical point;
< 0 ! unstable:

8<
: ð23Þ
The second derivatives of the potential with respect to the aspect ratio are approximated by
d2P
dq2

����
q¼qequ

�
Pðqequ þ DqÞ � 2PðqequÞ þ Pðqequ � DqÞ

Dq2
: ð24Þ
4. Results

The following results are calculated in 2D under plane strain condition and no external loads are

considered.

For a systematic investigation of the problem, it is useful to introduce the following dimensionless

parameters:
L ¼
�ll�llM�ee

2

c
; �GGn ¼

Gn

�ll�llMð�eeÞ
2
; A ¼ 2C44

C11 � C12

; l� ¼ �llI

�llM
: ð25Þ
Here �ll ¼
ffiffiffiffiffiffi
AI

p
is a characteristic particle size, �llM the effective shear modulus defined in (26), which describes

an average stiffness of the matrix material and �ee is defined as the largest eigenvalue of the eigenstrain tensor

e0. Thus, the dimensionless particle size L is the ratio of a characteristic elastic energy to a characteristic
interfacial energy. To obtain a critical particle size Lcrit, set c ! ccrit according to Eq. (21). Using the Voigt-

notation of the fourth order stiffness tensor C, a measure for the anisotropy of the materials is given by the

ratio AI ¼ AM ¼: A. The influence of AI 6¼ AM has been already discussed in (Schmidt and Gross, 1997). But

especially with respect to alloys, the anisotropic equality of the two phases presents a realistic assumption.

The stiffness ratio l� is defined by the averaged shear modulus of the inclusion and the matrix. In an

anisotropic material, the averaged Lam�ee-constants �ll, �kk and the averaged Poisson�s ratio �mm are given by:
�ll ¼ 1

2p

Z 2p

0

C1212ðuÞdu; �kk ¼ 1

2p

Z 2p

0

C1122ðuÞdu; �mm ¼
�kk

2ð�kk þ �llÞ
: ð26Þ
Here, the averaging has to be done over all orientations u. With this choice we investigate the equilibrium

morphology with respect to the parameter set S ¼ fL; l�;A; �mmI ; �mmMg and, additionally, the macroscopic

response with respect to the volume fraction cI of the inclusion.

4.1. Equilibrium morphology

Due to the aspect ratio of the precipitate, the elastic strain energy defined in (4) is either a convex or a

concave function depending on the stiffness ratio l� and has either a global minimum or a global maximum

at q� :¼ ðq � 1=q þ 1Þ ¼ 0. Contrary, the interfacial energy part is always convex, i.e. independent of l�,

and has a global minimum at q�
equ ¼ 0. In combination, the convexity depends on the particle size L.

Therefore, it exists a critical value Lcrit, which has the meaning of a bifurcation point from convexity to

concavity at q�
equ ¼ 0. This is true for fourfold symmetric convex precipitates, where the aspect ratio is well

defined and if dilatational eigenstrains and orthotropic materials are considered. Under this conditions, we

will discuss the main influence of the parameter set S on this bifurcation point in the following.



Fig. 2. Bifurcation diagram––influence of the stiffness ratio l� (A ¼ 1:0).
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For isotropic particles in an isotropic matrix (A ¼ 1:0), the presented shape optimization leads to circular

equilibrium shapes below the bifurcation point and elliptical shapes above of it. As it is shown in the

stability diagram (see Fig. 2): if L is small enough, the minimum of the total potential is always given by a

circle q�
equ ¼ 0 8L6 Lcrit. For over-critical values, the stable equilibrium shape (bifurcated solid line) is

getting elliptical q�
equ 6¼ 0 8L > Lcrit, i.e. elongated in different principal directions for q�

equ < 0 and q�
equ > 0

respectively. At the same particle size, the circular shape presents an unstable equilibrium (dashed line). The

solid line is calculated under the condition of k ¼ l and l� ¼ 0:5. This should serve as a reference due to the

other parameters. As can be seen, the bifurcation point strongly depends on the stiffness ratio. An increase
of l� results in a shifting of the bifurcation curve up to higher values of L. However, the qualitative be-

haviour remains the same.

This can be explained by the curvature of P in Fig. 3, where d2P=dq2 at q�
equ ¼ 0 is drawn for different

particle sizes. For the small value L ¼ 4, Pðl�Þ is convex for all l�. Thus, there exist only circular equi-

librium shapes: q�
equ ¼ 0 8l�. For the larger particle L ¼ 10, we obtain a change in the sign of the curvature

for a certain range 0.2–0.7 of l�. This leads to elliptical shapes qequ 6¼ 0 for all materials with l� ¼ 0:2–0:7
and circular shapes for other values of l�. This range gets more and more significant for increasing particle

sizes. For L ! 1, where the elastic energy dominates, only elliptical equilibrium shapes exist for soft
particles (l� < l�

as ¼ 1:0). For stiffer inclusions, only circular shapes are in equilibrium and there is no

bifurcation point. Here, the asymptote l�
as defines the names of ‘‘soft’’ (l� < l�

as), ‘‘hard’’ (l
� > l�

as) and

‘‘homogeneous’’ (l� ¼ l�
as) inclusions.

However, even a decrease in the stiffness ratio leads to the aforementioned shifting of Lcrit. Fig. 4 shows

the bifurcation point as a function of the stiffness ratio l�. It also demonstrates the influence of inhomo-

geneity.

In the reference curve (k ¼ l) and for a stiffness ratio l� ¼ 0:5, the instability is reached at the critical

particle size of Lcrit ¼ 7:0 (likewise depicted as a dotted line in Fig. 2). It exists both circular shapes and
elongated shapes. For the transition to hard inclusions (l� ! l�

as) or very soft inclusions (l� ! 0), only

circles are possible and it exists no significant bifurcation point. However, for the smaller value l� ¼ 0:32,



Fig. 3. Curvature for different particle sizes L (A ¼ 1:0).

Fig. 4. Stiffness ratio and Poisson�s ratio of the inclusion.
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the instability is also reached at the same point. Therefore, a simple statement whether an increase of l� also
increases the stability is not possible. It is only valid for a certain range of l�. In this case for roughly

l� > 0:4, the minimum of the curve.



Fig. 5. Influence of Poisson�s ratio mI for l� > 0:4.
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Likewise depicted in this figure is a variation of the inclusion�s Poisson ratio mI . For smaller values of mI ,
the zone of stable circular equilibrium shapes becomes more and more dominant. This indicates a smaller

Poisson�s ratio as a stabilizing parameter for equilibrium shapes.

Fig. 5 shows this influence in detail. Lcrit in dependence of mI is a monotonous decreasing function. The

sensitivity for a stiffness ratio of l� > 0:4 shows likewise a distinct stabilizing tendency. Contrary, for

smaller values of l�, the stability additionally depends on the value of mI (see Fig. 6). As a reference serves
the two stiffness ratios l� ¼ 0:32 and l� ¼ 0:5 (dotted lines in Fig. 4). For a Poisson�s ratio of mI > 0:25, an
increase of the stiffness ratio also increases the stability. For mI < 0:25, the stability decreases. Further

investigations have shown that the effect of the Poisson ratio of the matrix mM on the stability can be

neglected.

In order to describe the material behaviour of e.g. Ni-base superalloys, the isotropy has to be replaced by

a realistic fcc/bcc crystal structure, which implies orthotropic symmetry. Considering this case, we have to

pay attention to further phenomenons due to our set of parameters. For such a cubic material, the effective

Lam�ee constants in Eq. (26) can be written as
�ll ¼ 1
4
½C11 � C12 þ 2C44�; �kk ¼ 1

4
½C11 þ 3C12 � 2C44�: ð27Þ
For orthotropic particles in an orthotropic matrix (A > 1:0), the presented shape optimization leads to
cube-like equilibrium shapes. Like in the isotropic case the stable shapes are elongated above a certain

bifurcation point.

As a reference material in the anisotropic case, we take A ¼ 2:5, mI ¼ mM ¼ 0:3 and l� ¼ 1:0. It mimics,

for example, the behaviour of nickel (dotted lines in Figs. 9 and 10). But in contrast to isotropic materials,

bifurcation occurs even for a homogeneous particle (l� ¼ 1:0).
This stability behaviour is depicted in Fig. 7 by means of the curvature of the potential at q�

equ ¼ 0. Like

in the isotropic case, Pðl�Þ is strictly convex for the small value L ¼ 4 and only cubic shapes (q�
equ ¼ 0) exist.

But for L ¼ 10, we obtain a change in the sign of the curvature for a larger range of l� than for A ¼ 1. This
leads again to elongated equilibrium shapes for all stiffness ratios within this range and otherwise cubic



Fig. 6. Influence of Poisson�s ratio mI for l� < 0:4, k ¼ l.

Fig. 7. Curvature for different particle sizes (A ¼ 2:5).
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shapes. Thus, the given explanation with respect to Fig. 3 is also valid in this anisotropic case. However, a
shifting of the asymptote up to a higher value of l�

as � 1:5 can be detected for L ! 1. Thus, the asymptote

l�
as redefines the names of ‘‘soft’’, ‘‘hard’’ and ‘‘homogeneous’’ in the common way. An anisotropic ‘‘hard’’

particle with l� > 1 might have the same bifurcation behaviour as an isotropic soft particle with l� < 1.



Fig. 8. Influence of the stiffness ratio l�.

Fig. 9. Influence of the anisotropy A and l�.
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This behaviour is also shown in detail in Fig. 8. The influence of the stiffness ratio on the bifurcation
point is plotted for various anisotropy ratios. The dotted line shows the asymptote for the isotropic case.

An increase of the anisotropy causes a distinct shift of the asymptote and causes a decrease of the bifur-

cation point at the same time. Thus, isotropy has a stabilizing effect to the equi-axed equilibrium shape.



Fig. 10. Influence of mI and anisotropy A (l� ¼ 1:0).
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Fig. 9 presented a graphical realisation of this statement for various stiffness ratios. The bifurcation

point is a monotonous decreasing function of the anisotropy. The influence of the stiffness ratio depends on

the value of l�. If l̂l� denotes the minimum of Lcritðl�Þ, the stiffness ratio stabilizes the equilibrium shape for
l� < l̂l� _ l� > l̂l�. Within this picture, the stabilizing effect for l� > l̂l� is shown.

The effect of the inner Poisson ratio is depicted in Fig. 10. Like in the isotropic case, LcritðmIÞ is a

monotonous decreasing function. A decrease of mI stabilizes the equilibrium shape. The higher the value of

the anisotropy A the earlier the bifurcation starts. Again, isotropy stabilizes the system. Further investi-

gations have shown that the influence of the stiffness ratio is comparable to the isotropic case.

However, it should be mentioned at this point that all the discussed parameters also have an influence on

the ‘‘circular character’’ of the equilibrium shape: in the anisotropic case, the increase of the particle size

results in a more and more cube like shape, which is well known by Ostwald-ripening during particle
growth. This further effect has been discussed in detail by Schmidt and Gross (1997) and Mueller and Gross

(1998).
4.2. Some macroscopical aspects

The change in the microstructure due to the particle morphology results in a change of the overall

properties in two phase materials. Some tendencies of this macroscopical response are given in the fol-

lowing examples. For this purpose, the isotropic reference configuration A ¼ 1 with the parameters k ¼ l,
the stiffness ratio l� ¼ 0:5 and the particle size L ¼ 8:5 is considered. This choice leads to an unstable

equilibrium shape of q�
equ ¼ 0 and two stable elongated shapes of about q�

equ ¼ �0:3 in the case of an infinite

matrix domain (c :¼ cI ! 0). For the numerical treatment of higher volume fractions, the boundary

conditions corresponding to Eq. (11) are used. Because of the fact of isotropy, the FEM-results can be
compared to the analytical approximations of Voigt and Reuss (14), dilute distribution (15) and Mori–

Tanaka (16).



Fig. 11. Effective shear modulus (A ¼ 1:0, q�
equ ¼ 0, L ¼ 8:5).
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The evaluation of (13) for q�
equ ¼ 0 yields an effective stiffness tensor Ceff , which is isotropic due to the

introduced approximations. The effective shear component leff
12 is depicted in Fig. 11 in dependence of the

volume faction c. The effective shear modulus decreases for a higher volume fraction of the softer phase.

The solid line presents the upper bound of the Voigt approximation, the dashed line the lower bound by

Reuss. The equilibrium shape of the inclusion depends strongly on the volume fraction c. This dependency
is also shown in the figure. For a small volume fraction, the inclusion has almost an ideal circular shape.

For higher values of c, the equilibrium shape becomes more and more cuboidal in [1 1 0]-direction

(c ¼ 0:30), then circular again (c ¼ 0:50) and finally cuboidal in [1 0 0]-direction. This yields an anisotropic

effective stiffness tensor (see Fig. 12). For a discussion of the role of the volume fraction due to the stability
of the equilibrium shape, see (Schmidt and Gross, 1997; Mueller et al., 2000). Although not a purely cir-

cular shape of the isotropic particle, the FEM-results are in good agreement with the approximation of

Mori–Tanaka. The dilute distribution, of course, is only valid for a small volume fraction, deviates more

and more from the numerical result for increasing c and is not valid for c > 0:25.
The evaluation of Ceff for q�

equ 6¼ 0 leads always to an effective orthotropic stiffness tensor. The quali-

tative behaviour of the curve for leff
12 is comparable to Fig. 11. A more interesting effect is the effective

anisotropy of the overall properties induced by elliptical inclusions. Fig. 12 shows the dependency of the

effective anisotropy on the volume fraction for the considered particle size. Even for a small volume fraction
c ¼ 0:1, the macroscopical anisotropy of the composite decreases of about 2% for the equilibrium shapes

elongated in [1 0 0]-direction and increases of about 1% for the shapes elongated in [0 1 0]-direction. This

effect is getting more and more significant for a higher volume fraction. The equilibrium shapes of the

elongated particles vary hardly from the ideal ellipsoidal shape.

Finally, the influence of the particle elongation due to the macroscopical response is discussed. Fig. 13

shows the effective shear modulus in dependence of the aspect ratio q� for a volume fraction of c ¼ 0:10.
Again, the numerical results are in a good agreement with the approximations by Mori and Tanaka. The

effective stiffness decreases for elliptical inclusions, i.e. independent of the direction of elongation. The
material reaches its maximum stiffness for circular shapes. The same results are obtained by the investi-



Fig. 12. Macroscopical anisotropy for L ¼ 8:5.

Fig. 13. Effective shear modulus for various particle sizes.
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gations of orthotropic particles, where the cuboidal shapes increases the overall stiffness of the material.

This behaviour can be observed by rafting experiments, where a decrease in the overall stiffness is detectable

associated with a directional elongation of the particles (Wahi, 1997). The results on stabilization of the

particle shape are also relevant for the design of the overall material properties.
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5. Conclusions

A numerical investigation of the stability of equilibrium shapes of coherent precipitates has been pre-

sented. Elastically inhomogeneous, misfitting particles with dilatational eigenstrain have been considered. A
variational principle for an elastic inclusion has been used to derive a necessary (but not sufficient) con-

dition for an equilibrium shape. It was shown that the elastic constants, particle size and inhomogeneity are

relevant factors for the stability of an equilibrium shape. For the macroscopical response, the volume

fraction of the particles has been additionally taken into account. For the numerical treatment, the field

equations and the configurational forces have been solved by the finite element method. The effective

overall properties of the composite have been determined simply by the quantities on the cell boundary.

The necessary modifications for stabilizing the equi-axed morphologies have been pointed out.

Appendix A. Discretization of the interface

Elastic part. First, we derive the relation between the discrete configurational force acting on the finite

element node GI in (19) and the configurational force Gn per unit area in (9). Both are results of the

variational principle due to the total potential P with respect to a virtual movement of a point (or node) xI

on the interface:
dP ¼ GI 	 dxI ¼ �
Z
oXs

Gel
n dnds: ðA:1Þ
Here oXs is the element boundary along the interface oB. To obtain the discrete values due to dn, we chose
linear shape functions NIðsÞ for the interface (see Fig. 14):
dn ¼ NIðsÞdnI : ðA:2Þ

The variation in normal direction is given by dxI ¼ ndnI . Thus, we obtain:
G 	 dxI ¼ �
Z
oXs

IGel
n dnds () GI 	 n|fflffl{zfflffl}

¼GI
n

dnI

¼ �
Z I

oXs

Gel
nN

IðsÞdnI ds () GI
n

�
þ
Z
oXs

IGel
nN

IðsÞds
�
dnI ¼ 0: ðA:3Þ
Fig. 14. Discretized interface oB.
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Here IGel
n denotes the force Gel

n acting on the node I . Since Eq. (A.3) has to be fulfilled for arbitrary dnI , the
bracket has to vanish. This leads to the required relationship:
GI
n ¼ �

Z I

oXs

Gel
nN

JðsÞds: ðA:4Þ
Interface part. For calculating the configurational force IGint
n acting on the node I according to Eq. (9), the

curvature jI at this node has to be known. We chose an equi-distant mesh at the interface and approximate

jI by the curvature of a circle defined by the three nodes I � 1, I and I þ 1. The unit vector mI at the node I
is given by
mI ¼ xIþ1 � xI�1

jxIþ1 � xI�1j : ðA:5Þ
The normal unit vector nI is orthogonal to m: nIx ¼ mI
y and nIy ¼ �mI

x. Now we define the vectors

aI ¼ xI � xI�1 and bI ¼ xIþ1 � xI , which connect the nodes I � 1 and I þ 1 with I (see Fig. 14) and obtain

the (negative) curvature to be
jI ¼ � 2 sin aI

jaI j where aI ¼ arccos
bI 	mI

jbI jjmI j

� �
: ðA:6Þ
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